
1

LLNL-Earth3D User Manual

Eric Matzel, Nathan A. Simmons, Steve Myers

Lawrence Livermore National Laboratory

LLNL-SM-652345

Revised March 28, 2014

Table of Contents
1. Introduction………………………………….. 1

 1.1 General Background………………… 1

 1.2 References……………………………. 4

2. Getting Started……………………………….. 5

3. Ray tracing………………………………….... 6

 3.1 Ray tracing input options…………… 7

3.2 Ray tracing output options…………. 8

3.3 Examples……………………………… 9

4. Querying a model…………………………….. 13

 4.1 General queries………………………. 13

 4.2 Profiles and cross sections.…………... 14

 4.3 Map output…………………………… 17

5. Model importation…………………………… 18

1. Introduction

LLNL-Earth3D is a computer code designed to support the use of the LLNL-G3D series of models (see

Simmons et al. 2011, 2012). The primary purpose of the code is to compute 3-D ray paths for various

body waves and calculate travel times between a seismic source and a seismic station. The code

navigates the hierarchical spherical tessellation framework of the LLNL-G3D models and is multi-

threaded so that a number of ray paths and travel times can be computed concurrently. LLNL-Earth3D is

also a more general model interface allowing for model property output, such as seismic velocity and the

depth (or radius) of velocity discontinuities.

The LLNL-Earth3D code is written in Java and will work on any system with Java version 1.6.0 or

higher. LLNL-Earth3D has been tested at LLNL on Windows, Linux, OS-X, and SUN systems.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore

National Laboratory under Contract DE-AC52-07NA27344.

1.1 General Background

LLNL-Earth3D allows for fast calculation of 3-D seismic travel times and ray paths through a 3-D model

of the Earth specifically represented with the LLNL-G3D global-scale model architecture. The model

architecture is node-based and consists of a series of surfaces that may undulate (not necessarily

spherical). Therefore, Earth’s ellipticity and undulating discontinuity surfaces (such as the Moho) are

explicitly represented. Each model surface is defined by a set of nodes evenly distributed around the

globe, and multiple model properties (e.g. Vp, Vs, Q, etc.) may be defined at each node for a given

2

surface. The positioning (latitude and longitude) of the model nodes are defined by the vertices (or

intersections) of the spherical tessellation grids (Figure 1). The spherical tessellation grids are created by

recursive subdivision of triangular faces on a spherical surface. Each recursive subdivision of a

tessellation grid generates higher resolution surfaces and a new level in the tessellation hierarchy which

may be exploited for fast model referencing (see Simmons et al., 2011).

To represent undulating (aspherical) surfaces, nodes are placed at arbitrary radii along geocentric vectors

defined from the center of the Earth through the spherical tessellation vertices (Figure 2). Three-

dimensional piecewise linear interpolation between nodes and surfaces is used to determine the value of

model parameters at any arbitrary location. Discontinuities (e.g. the Moho) are represented with two

surfaces defined at the same location, but with differing values (such as velocity) assigned to the top-side

and bottom-side sets of nodes.

Figure 1. Summary of the LLNL-G3D model architecture. a) Selected levels of the spherical tessellation grids that define the

location of nodes in the lateral extent. Nodes are placed at arbitrary radii in the direction of geocentric vectors pointing from the

center of the Earth to the vertices. b) Description of the model surfaces in the LLNL-G3Dv3 P-wave model (Simmons et al.,

2012). Wavy lines correspond to surfaces that undulate and thick lines correspond to double surfaces needed to honor

discontinuities. Flat lines correspond to surfaces that do not undulate, but note that all surfaces conform to the expected

hydrostatic shape of the Earth (none of the surfaces are flat or spherical). The figure is from Simmons et al. (2012).

Figure 2. Model referencing and node architecture. (a-b) A hierarchical triangle searching algorithm is used to establish the

vertices that surround a unit vector in the direction of the point-of-interest, p̂ . Barycentric coordinates (triangular weights) are

inherently determined at each step in the hierarchical search providing lateral interpolation weights at all tessellation levels. (c)

Model nodes are placed at arbitrary radii in the direction of the vertices allowing for representation of irregular surfaces. To

determine radial interpolation weights, radial profiles are determined along p̂ by lateral interpolation of radii for surrounding

points (R1 interpolated from
ca1,r

 and R2 interpolated from
ca2,r
). The distances of R1 and R2 from the point-of-interest (POI)

provide the simple radial interpolation weights, and any model property can then be determined. The figure is from Simmons et

al. (2011).

3

Three-dimensional ray tracing is performed through the complex model using a modified version of the

Zhao et al. (1992) method that uses pseudobending within the continuous part of the media while

honoring Snell’s law at discontinuous interfaces (Figure 3). The ray tracing modifications include

methods to overcome local travel time minima issues and the ability to find multiple paths for regional

phases that arrive within some time tolerance (“multi-pathing”). For more detailed information regarding

model architecture and modeling procedures see Myers et al. (2011), Simmons et al. (2011), and Simmons

et al. (2012).

Figure 3. Three-dimensional ray tracing procedure adapted from Zhao et al. [1992] and seismic sensitivity definitions. (top)

Several trial ray paths are tested to seek out the global minimum travel time. We perform a limited number of pseudo-bending

[Um and Thurber 1987] and piercing point adjustment iterations on a set of simple starting paths (black dashed lines). Ray paths

that provide travel times within some time tolerance (black solid lines) are further refined through bending and piercing point

adjustments until only slight improvement (reduction) in travel times is observed (green dashed and solid lines). The minimum

time path can then be selected from the set (green solid line). (bottom) Example 3-D ray paths calculated through the global

velocity model constructed in Simmons et al. (2011).

4

1.2 References:

Myers, S.C., G. Johannesson, and N.A. Simmons (2011). Global-scale P-wave tomography optimized for

prediction of teleseismic and regional travel times for Middle East events: 1. Data set

Development, J. Geophys. Res., 116, B04304, doi:10.1029/2010JB007967.

Simmons, N.A, S.C. Myers, G. Johannesson (2011). Global-scale P-wave tomography optimized for

prediction of teleseismic and regional travel times for Middle East events: 1. Tomographic

inversion. J. Geophys. Res., 116, B04305, doi:10.1029/2010JB007969.

Simmons, N.A, S.C. Myers, G. Johannesson, and E. Matzel (2012). LLNL-G3Dv3: Global P wave

tomography model for improved regional and teleseismic travel time prediction. J. Geophys.

Res., 117, B10302, doi:10.1029/2012JB009525.

Um, J. and C. Thurber (1987). A fast algorithm for two-point seismic ray tracing, Bull. Seis. Soc.

Amer., 77, 972-986.
Zhao, D., A. Hasegawa, and S. Horiuchi (1992). Tomographic imaging of P and S wave velocity structure

beneath northeastern Japan, J. Geophys. Res., 97, 19,909–19,928, doi:10.1029/92JB00603.

5

2. Getting Started

The LLNL-Earth3D code is written in Java and will work on any system with Java version 1.6.0 or

higher. LLNL-Earth3D has been tested at LLNL on Windows, Linux, OS-X, and SUN systems. The

LLNL-Earth3D .jar file may be executed by:

java -jar LLNL-Earth3D.x.x.jar

where “x.x” is a generic version number. If memory allocations for your platform are insufficient, you

may need to execute by adding flags:

java -jar -ms1500m -mx1500m LLNL-Earth3D.x.x.jar

Executing the .jar without any arguments will create a user prompt:

 E3D (input command):

After which you will enter command line options, described below. The program will continue to take

user input until the user types the command “exit” or “quit”, e.g.:

 E3D (input command): quit

Alternatively, a single command can be run by including the arguments in the command line. For

example:

 java -jar LLNL-Earth3D.x.x.jar -getlayerinfo earthmodel

In the above command, the major operation is to list information about the layers in in the binary earth

model, which may be a complete path pointing to a binary formatted earth model file. The code will

execute this command, then exit LLNL-Earth3D. This option is used to facilitate LLNL-Earth3D being

called by external programs.

All major operations are executed with switches (such as -getlayerinfo shown above) immediately

following the .jar file name or at the beginning of the command prompt, depending on your execution

style.

NOTE: Working from the prompt is more efficient if multiple operations are to be performed using a

single earth model since the command line version requires loading a model into memory each time.

Alternatively, a list of arguments from a text file could be passed simultaneously with the -arglist switch.

To get help regarding usages and the utilities available in the local .jar version, simply type -help at the

E3D user prompt or, if LLNL-Earth3D is not initiated, type:

java -jar LLNL-Earth3D.x.x.jar -help

6

3. Ray tracing

Basic usage (output travel times only)

LLNL-Earth3D was originally designed to compute 3-D ray paths and travel times for many source-

receiver pairs simultaneously, and as efficient as possible. Therefore, a plain text file containing rows

with event locations, station locations, and phases is passed to the code. The event-station-phase rows are

then distributed using multi-threading techniques.

To ray trace with default options, the general command is:

java -jar LLNL-Earth3D.x.x.jar -raytrace earthmodel events_stations_phases

or, from the command prompt:

 E3D (input command): -raytrace earthmodel events_stations_phases

The variables are filenames pointing to the binary earth model (earthmodel)and the event-station-phase

list (events_stations_phases). The event-station-phase list can have as many rows (entries) as desired and

each row is formatted as follows:

[event_lat event_lon event_depth station_lat station_lon station_elevation phase extra…]

The event_depth and station_elevation are relative to a reference surface defined in the model (mean sea

level for LLNL-G3Dv3 and other LLNL models). phase is a phase name such as P or Pn, etc. extra can

be any additional columns of information the user wishes to include.

The default output will be a file named events_stations_phases with the added extension ".TT" which

stands for Travel Times. The .TT file will contain all of the information in each row of the input file plus

additional columns of output like the following:

[…input EARTH3D traveltime water_corr_ev water_corr_st arc_distance azimuth uniqueID]

Each line of output will have the word "EARTH3D" after the input columns if the code was able to ray

trace the path, and the word "NULL" if it could not. The travel time (traveltime) follows EARTH3D and

then an event-side water correction (water_corr_ev) and a station-side water correction (water_corr_st).

Water corrections arise when an event or station appear to be in the water due to the resolution limitations

of a given model. This happens quite often for ocean-island stations. If it is known that the event was not

in the water, simply add the water_corr_ev term to the traveltime to get the total travel time. Likewise, if

it is known that the station is in fact on solid land, add the water_corr_st term to the traveltime to get the

total travel time.

Additional outputs include the event-station arc distance in degrees (arc_distance), the event-to-station

azimuth (azimuth) and a unique identifier (uniqueID). The uniqueID are integers starting with zero that

correspond to the row number of the input since the row ordering provided in the input file may not be

preserved. The reordering occurs due to the multi-threading process which distributes each of the rows to

multiple processors that complete the tasks at differing rates.

7

3.1 Ray tracing input options

Seismic phases

LLNL-Earth3D will attempt to compute travel times for a variety of phases. The user simply must

identify the desired phase in each line of the events_stations_phases file. To get a current list of available

seismic phases along with descriptions, type -listphases at the command prompt or:

java -jar LLNL-Earth3D.x.x.jar -listphases

Note: While some phases are relatively simple and have been tested more thoroughly than others (e.g.

first arriving P and S waves), some other phases are more complex and may be unrealistic in extreme

model regions and with difficult event-receiver configurations.

Travel time tolerances

For some seismic phases, the ray tracing algorithm begins with a single crude estimate of the path, then

refines it according the pseudobending/Snell’s law technique to find the minimum-time path. However,

some phases (usually regional) require several initial paths to test and refine. For these more complex

phases, the set of initial paths are partially optimized and down-selected to a smaller set of paths based on

some initial time tolerance (tolerance1). The remaining paths are further refined and down-selected a

final time based on a secondary time tolerance (tolerance2). See Figure 3 for a visual description. If the

second tolerance (tolerance2) is greater than zero, it is possible that multiple paths are found to be within

the given tolerance of the minimum time. In these cases, multiple paths are returned to the .TT file and

path files if requested.

To adjust these tolerances, the user may put two numbers representing the two tolerances (in seconds) on

the input line immediately after the event-station file:

E3D (input command): -raytrace earthmodel events_stations_phases tolerance1 tolerance2

The default tolerances are 2 and 0 seconds, respectively. Increasing the first tolerance (tolerance1) will

allow more rays to be passed to the second phase for further optimization. Increasing the second

tolerance (tolerance2) above zero will possibly result in multiple paths and travel times for some phases,

whereas a second tolerance equal to 0 will return the minimum-time path.

Multi-threading

The default behavior when ray tracing is seek out the number of available processors (Nproc) on the

working platform and create Nproc+2 threads since this is found to be most efficient. This default can be

changed by adding the –nthreads switch followed by the number of threads desired:

E3D (input command): -raytrace earthmodel events_stations_phases tolerance1 tolerance2 -nthreads N

where N is the number of threads. Note that the tolerance values do not need to be specified if the default

values are satisfactory:

E3D (input command): -raytrace earthmodel events_stations_phases -nthreads N

8

3.2 Ray tracing output options

Screen output

Simply include the switch -verbose or -v to output travel time results to the screen.

Output ray paths

When ray tracing, LLNL-Earth3D always outputs a travel time file (*.TT) by default. In addition, there

are options for outputting ray paths. To output the full ray paths to files, add the switches -p or -paths

after the ray tracing command:

E3D (input command): -raytrace earthmodel events_stations_phases -paths

Note that multiple switches (such as -nthreads N) can be included as well. The above command will

output an ASCII file for each row of the events_stations_phases unless a particular path calculation was

unsuccessful for any reason.

Each of the path file names will begin with input file name (events_stations_phases) with the added

extension that includes the unique identifier (row number from the input file beginning with 0) followed

by ".ascii.path". For example, if the input file name is "myRays.txt", the first output path file name will

be "myRays.txt.0.ascii.path" and the 2nd file name will be "myRays.txt.1.ascii.path", etc.

Each of the path files will contain a header containing the output travel time information, the number of

paths computed, the number of points in each path, and the path points. Each point along the path (each

row after the header) will have the following format:

[point_lat point_lon point_radius point_distance point_depth]

where point_distance is the distance from the event origin to each point along the path (in km). If the

actual coordinates of the paths are not needed, another option is to output only the point_distance and

point_radius using the -distradius or -dr flag:

E3D (input command): -raytrace earthmodel events_stations_phases -distradius

Similar to the -paths output, each distradius file will have a header followed by points that are represented

by only 2 columns in this case ([point_distance point_radius]). Filenames will have indexes just like the

.path files, but end with ".distradius" as an extension.

9

3.3 Examples

Example 1a: Travel times

In this example, travel times for a small suite of P-wave phases will be computed using the LLNL-G3Dv3 model from Simmons et al. (2012).

Suppose we have created a text file named “myRays.txt” which contains:

37.68 -121.77 4.5 33.61 -116.46 1.28 Pn user data

37.68 -121.77 4.5 57.78 -152.58 0.15 PcP extra info

37.68 -121.77 4.5 -17.74 178.05 0.801 P event1

33.90 -117.05 12.1 33.61 -116.46 1.28 Pg event2

-29.90 25.13 35.7 33.61 -116.46 1.28 PKPdf ev3

The first 7 columns contain the required elements including earthquake latitude/longitude and depth (first 3 elements), the required station

latitude/longitude and elevation (next 3 elements), and the seismic phase. The user may add additional columns that will not be used for ray

tracing.

Here is an example -raytrace command to find the minimum-time paths:

java -jar Earth3D.5.3.jar -raytrace LLNL-G3Dv3.e3d.binary G:\PROGRAMS\EARTH3D\myRays.txt -verbose

Since we are not running from the prompt, the model (which also contains the hierarchical tessellation grids and pre-computed data used for ray

tracing) will be loaded. The loading process requires some wait time and you will see:

Calculating Cross Products and Arc Distances...

Finding Triangle Centroids...

…

1: Water (top) added

reading layer[0] 1: Water (top)

2: Water (bottom) added

reading layer[1] 2: Water (bottom)

3: Sediment 1 (top) added

reading layer[2] 3: Sediment 1 (top)

4: Sediment 1 (bottom) added

…

Inner Core (6371km) added

reading layer[94] Inner Core (6371km)

completed earthmodel file read

10

Once the model is loaded, the lines of the “myRays.txt” will be read and ray tracing will commence. If the -verbose flag is included, the travel

time output will be displayed on the screen. In any case, a file named “myRays.txt.TT” will now exist in the current working directory. The .TT

file will have the contents:

Earth3D.5.3 -raytrace LLNL-G3Dv3.e3d.binary G:\PROGRAMS\EARTH3D\myRays.txt 2.0 0.0 -v

 33.9000 -117.0500 12.1000 33.6100 -116.4600 1.2800 Pg event2 EARTH3D 10.756 0.000 0.000 0.57034 120.31098 3

 37.6800 -121.7700 4.5000 -17.7400 178.0500 0.8010 P event1 EARTH3D 726.094 0.000 -0.886 78.94891 237.40205 2

 37.6800 -121.7700 4.5000 33.6100 -116.4600 1.2800 Pn user data EARTH3D 87.598 0.000 0.000 5.93075 131.63000 0

 37.6800 -121.7700 4.5000 57.7800 -152.5800 0.1500 PcP extra info EARTH3D 547.156 0.000 -0.191 28.47414 324.86188 1

 -29.9000 25.1300 35.7000 33.6100 -116.4600 1.2800 PKPdf ev3 EARTH3D 1177.306 0.000 0.000 147.25546 286.55142 4

The top line of the .TT file will have the ray tracing command line inputs that were entered (default travel time tolerances 2 and 0 will appear if

none were entered). Each row will contain the original rows of the input file along with the LLNL-Earth3D results after the “EARTH3D” text.

The elements of output include the travel time, event- and station-side water corrections, arc distance, azimuth, and unique identifiers (last

column). See the beginning of the Ray tracing section for more description. In this case, the first row of the input was the Pn phase, but output is

written on the 3rd data row due to the multi-threading. If desired, the rows can be resorted to the original order using the unique identifier.

Example 1b: Minimum-time path output

The previous example did not save the actual ray paths. This example will be an extension of the previous example and demonstrate how to output

ray paths to ASCII files. We will work from the command prompt to avoid loading in the model again:

E3D (input command): -raytrace LLNL-G3Dv3.e3d.binary G:\PROGRAMS\EARTH3D\myRays.txt -paths

Note that we have added the -paths flag. This will generate 5 files, 1 path file for each row in the input file. The path file corresponding with the

first row of the input file will be named “myRays.txt.0.ascii.path”. The contents of this file will look like:

>

> 37.6800 -121.7700 4.5000 33.6100 -116.4600 1.2800 Pn user data EARTH3D 87.598 0.000 0.000 5.93075 131.63000 0

> npaths: 1 thispath: 1

> 221

 37.6800 -121.7700 6365.6574 0.0000 4.5000

 37.6757 -121.7642 6365.0248 0.7009 5.1342

 37.6713 -121.7585 6364.3923 1.4020 5.7683

 37.6670 -121.7527 6363.7598 2.1033 6.4023

 37.6626 -121.7469 6363.1274 2.8046 7.0362

 37.6583 -121.7412 6362.4951 3.5061 7.6701

 …omitted…
 33.6104 -116.4604 6371.8688 659.4132 -0.2792

 33.6102 -116.4602 6371.9291 659.4410 -0.3394

 33.6100 -116.4600 6371.9894 659.4689 -1.2800

11

The first character of each header line is “>” so that all path files can be concatenated together and plotted with one GMT psxy command. The

travel time output is included in the header along with the number of ray paths that were found. There are 221 points in this path and the columns

include latitudes, longitudes, radii, distances along the path, and depth.

Example 1c: Multi-paths

The previous example only output the minimum-time path for each row of the event-station-phase input file. This example will be an extension of

the previous example and demonstrate how to output multiple ray paths with travel times within some tolerance of the minimum-time path.

Working from the prompt, type:

E3D (input command): -raytrace LLNL-G3Dv3.e3d.binary G:\PROGRAMS\EARTH3D\myRays.txt 4 0.5 -distradius

In the above command, we have changed the first travel time tolerance to 4 seconds and the second time tolerance to 0.5 seconds. In this case, ray

paths that arrive within 0.5 seconds of the minimum-time path found will be returned for some local and regional seismic phases such as Pg and

Pn. The file named “myRays.txt.TT” will be replaced with:

Earth3D.5.3 -raytrace LLNL-G3Dv3.e3d.binary G:\PROGRAMS\EARTH3D\myRays.txt 4.0 0.5 -dr

 33.9000 -117.0500 12.1000 33.6100 -116.4600 1.2800 Pg event2 EARTH3D 10.800 0.000 0.000 0.57034 120.31098 3

 33.9000 -117.0500 12.1000 33.6100 -116.4600 1.2800 Pg event2 EARTH3D 10.817 0.000 0.000 0.57034 120.31098 3

 33.9000 -117.0500 12.1000 33.6100 -116.4600 1.2800 Pg event2 EARTH3D 10.756 0.000 0.000 0.57034 120.31098 3

 33.9000 -117.0500 12.1000 33.6100 -116.4600 1.2800 Pg event2 EARTH3D 10.819 0.000 0.000 0.57034 120.31098 3

 37.6800 -121.7700 4.5000 -17.7400 178.0500 0.8010 P event1 EARTH3D 726.094 0.000 -0.886 78.94891 237.40205 2

 37.6800 -121.7700 4.5000 57.7800 -152.5800 0.1500 PcP extra info EARTH3D 547.156 0.000 -0.230 28.47414 324.86188 1

 37.6800 -121.7700 4.5000 33.6100 -116.4600 1.2800 Pn user data EARTH3D 87.598 0.000 0.000 5.93075 131.63000 0

 37.6800 -121.7700 4.5000 33.6100 -116.4600 1.2800 Pn user data EARTH3D 87.633 0.000 0.000 5.93075 131.63000 0

 37.6800 -121.7700 4.5000 33.6100 -116.4600 1.2800 Pn user data EARTH3D 87.750 0.000 0.000 5.93075 131.63000 0

 37.6800 -121.7700 4.5000 33.6100 -116.4600 1.2800 Pn user data EARTH3D 87.951 0.000 0.000 5.93075 131.63000 0

 -29.9000 25.1300 35.7000 33.6100 -116.4600 1.2800 PKPdf ev3 EARTH3D 1177.306 0.000 0.000 147.25546 286.55142 4

Note that the Pg and Pn phases have multiple entries with slightly different travel times. These multiple entries possibly indicate “true” mutli-

pathing, but there is no guarantee that the multi-paths are significantly different. In other words, multiple starting paths could have converged to

essentially the same path.

Rather than requesting paths with the -paths flag, we requested simplified path outputs with the -distradius command (which may be shortened to

“-dr”). Similar to the full path output, this will generate 5 files (1 for each event-station-phase entry). The first file will be named

“myRays.txt.0.distradius” and will look like:

12

>

> 37.6800 -121.7700 4.5000 33.6100 -116.4600 1.2800 Pn user data EARTH3D 87.598 0.000 0.000 5.93075 131.63000 0

> npaths: 4 thispath: 1

> 221

 0.0000 6365.6574

 0.7009 6365.0248

 1.4020 6364.3923

 2.1033 6363.7598

…omitted…

 659.3853 6371.8085

 659.4132 6371.8688

 659.4410 6371.9291

 659.4689 6371.9894

>

>

> 37.6800 -121.7700 4.5000 33.6100 -116.4600 1.2800 Pn user data EARTH3D 87.633 0.000 0.000 5.93075 131.63000 0

> npaths: 4 thispath: 2

> 221

 0.0000 6365.6574

 0.7102 6365.0248

 1.4206 6364.3922

 2.1310 6363.7597

…omitted…

In this example, the Pn phase produced 4 distinct paths, all of which are included in the single file. The path points are now represented only by

two columns containing the distances along the path from the event (in km) and radii of the points.

13

4. Querying a model

LLNL-Earth3D has a number of utilities to examine or extract properties from a given LLNL-G3D

formatted binary model. These include tools for general model queries, extracting profiles, extracting

layer information and maps.

4.1 General queries

Model layer information

Basic information about a particular model layer structure can be output to the screen with the command:

E3D (input command): -getlayerinfo earthmodel

Here is an example for the case where the LLNL-Earth3D prompt has not been established and the full

model path is included:

java -jar LLNL-Earth3D.5.3.jar -getlayerinfo G:\PROGRAMS\EARTH3D\MODELS\LLNL-G3Dv3.e3d.binary

Note that the full model path is not needed if it resides in the working directory. Also, if the earthmodel

of interest is already loaded into memory, simply execute with “-getlayerinfo” without the model name.

Otherwise, the model will be loaded into memory. Example output:

Layer[0], LayerName= '1: Water (top)', Max.Tess.Level= 6, Mean Radius= 6371.2212, Properties: Vp,

Layer[1], LayerName= '2: Water (bottom)', Max.Tess.Level= 6, Mean Radius= 6368.6106, Properties: Vp,

Layer[2], LayerName= '3: Sediment 1 (top)', Max.Tess.Level= 6, Mean Radius= 6368.6107, Properties: Vp,

Layer[3], LayerName= '4: Sediment 1 (bottom)', Max.Tess.Level= 6, Mean Radius= 6368.3758, Properties: Vp,

Layer[4], LayerName= '5: Sediment 2 (top)', Max.Tess.Level= 6, Mean Radius= 6368.3758, Properties: Vp,

Layer[5], LayerName= '6: Sediment 2 (bottom)', Max.Tess.Level= 6, Mean Radius= 6367.8412, Properties: Vp,

…omitted…

Layer[90], LayerName= 'Inner Core (5971km)', Max.Tess.Level= 4, Mean Radius= 400.0002, Properties: Vp,

Layer[91], LayerName= 'Inner Core (6071km)', Max.Tess.Level= 4, Mean Radius= 299.9996, Properties: Vp,

Layer[92], LayerName= 'Inner Core (6171km)', Max.Tess.Level= 4, Mean Radius= 199.9997, Properties: Vp,

Layer[93], LayerName= 'Inner Core (6271km)', Max.Tess.Level= 4, Mean Radius= 99.9999, Properties: Vp,

Layer[94], LayerName= 'Inner Core (6371km)', Max.Tess.Level= 4, Mean Radius= 0.0000, Properties: Vp,

Tessellation node locations

The latitudes and longitudes of the spherical tessellation grids may be output to a file with the command:

E3D (input command): -writelatlons maxlevel

where maxlevel is an integer of the maximum tessellation level. Note that if a model containing a

tessellation grid is not already loaded into memory, the above command will need to construct a spherical

tessellation grid. For example, the LLNL-G3Dv3.e3d.binary model is defined up to level 6, which

consists of 40,962 vertices. To get the latitude and longitude locations of each of nodes, type:

 E3D (input command): -writelatlons 6

which will create a file named "SphericalTessellationCoordinates.UpTo.Level.6.txt" with the contents

that look like the following:

Vertex Latitude Longitude

0 90.000000 0.000000

1 26.719301 72.000000

2 26.719301 0.000000

3 26.719301 -72.000000

14

4 26.719301 144.000000

5 26.719301 -144.000000

6 -26.719301 36.000000

7 -26.719301 -36.000000

8 -26.719301 108.000000

9 -26.719301 180.000000

10 -26.719301 -108.000000

11 -90.000000 0.000000

…omitted…

40957 -50.418391 -144.925818

40958 -49.400876 -144.000000

40959 -52.462817 -143.032003

40960 -53.490721 -144.000000

40961 -52.462817 -144.967997

General property query

Any model_property of interest (e.g. Vp, Vs, etc.) can be extracted using the -modelquery switch and

passing a file containing a set of points to the code:

E3D (input command): -modelquery earthmodel model_property points_file

where points_file is a user-generated plain text file with 3 columns containing the points of interest. Each

row of the points_file should be [latitude longitude depth]. The query will return a new text file that

contains the original input with an addition column with values corresponding to the model_property

value. The output file name will begin with the input file name with an added extension that corresponds

to the property name. For example, we may have a file named "MyPoints.txt" which contains the entries:

 30.95 40.51 10.9

 40.01 30.79 2400

-29.92 -31.42 1000

The command

E3D (input command): -modelquery LLNL-G3Dv3.e3d.binary Vp MyPoints.txt

will generate a file named "MyPoints.txt.Vp" with a 4th column containing Vp values for each point like

the following:

 30.9500 40.5100 10.9000 6.2003

 40.0100 30.7900 2400.0000 13.1993

 -29.9200 -31.4200 1000.0000 11.4631

4.2 Profiles and cross sections

Extracting 1-D profiles

LLNL-Earth3D will create 1-D profiles by interpolating any model property such as Vp at any specified

latitude and longitude. This is executed using the -create1dprofile command:

E3D (input command): -create1dprofile earthmodel model_property latitude longitude

The above command will output a text file named 1D_Profile_*.xy where the wildcard will consist of the

model name, property and coordinates. The *.xy file will contain 2 columns which are the radii and

model values.

15

For example, we can extract a P-wave velocity profile at latitude/longitude location of (30.5, -114.2) by

typing:

E3D (input command): -create1dprofile LLNL-G3Dv3.e3d.binary Vp 30.5 -114.2

This will output a file named “1D_Profile_LLNL-G3Dv3.e3d.binary_Vp_30.5_-114.2.xy” which will

look like:

 6372.7738 1.5000

 6372.7679 1.5000

 6372.7679 3.8117

 6372.7679 3.8117

 6372.7679 2.4663

 6372.1503 2.4663

 6372.1503 4.2999

…omitted…

 1100.2086 11.0725

 1000.1895 11.1054

 900.1710 11.1352

 800.1516 11.1619

 700.1323 11.1854

 600.1135 11.2058

 500.0947 11.2230

 400.0761 11.2371

 300.0565 11.2481

 200.0377 11.2559

 100.0188 11.2606

 0.0000 11.2622

Extracting 2-D profiles (cross sections) - default usage

LLNL-Earth3D will create 2-D profiles (cross sections) by interpolating any model property such as Vp

along a great circle path between 2 specified latitude/longitude points. This is executed using the -

create2dprofile command:

E3D (input command): -create2dprofile earthmodel model_property lat1 lon1 lat2 lon2

The above command will output a text file named 2D_Profile_*.xyz where the wildcard will consist of

the model name, property and coordinates. The *.xyz file will contain 3 columns containing:

[profile_distance radii model_property_value]

where profile_distance is the distance (in km) from the starting point defined by lat1 and lon1. The

profiles will be evenly sampled in radius and in distance for compatibility with making images with GMT

commands. With the default inputs, the code calculates the maximum resolution of the 3-D model and

then samples the path 5 times more densely. The model is sampled at every ~5 km in radius from 6370.0

to ~3800.0 km (the crust and mantle).

For example, we can extract a P-wave velocity cross section from the latitude/longitude location of (30.5,

-114.2) to (35, -116.9):

E3D (input command): -create2dprofile LLNL-G3Dv3.e3d.binary Vp 30.5 -114.2 35.0 -116.9

This will output a file named “2D_Profile_LLNL-G3Dv3.e3d.binary_Vp_30.5_-114.2_35.0_-116.9.xyz”

which will look like:

16

 0.0000 6370.0000 6.0949

 0.0000 6365.0097 6.0949

 0.0000 6360.0194 6.2045

 0.0000 6355.0291 6.2045

 0.0000 6350.0388 6.6562

 0.0000 6345.0485 6.6562

…omitted…

 0.0000 3814.9709 13.4572

 0.0000 3809.9806 13.4631

 0.0000 3804.9903 13.4689

 23.3504 6370.0000 6.0980

 23.3504 6365.0097 6.0980

 23.3504 6360.0194 6.2039

 23.3504 6355.0291 6.2039

…omitted…

 560.4085 3814.9709 13.4601

 560.4085 3809.9806 13.4668

 560.4085 3804.9903 13.4735

In addition, files containing the radii of each model layer along the great circle path will be output to files

named:

“Layer_0_LLNL-G3Dv3.e3d.binary_30.5_-114.2_35.0_-116.9.xy”

“Layer_1_LLNL-G3Dv3.e3d.binary_30.5_-114.2_35.0_-116.9.xy”

…

“Layer_94_LLNL-G3Dv3.e3d.binary_30.5_-114.2_35.0_-116.9.xy”

Each of the above files will have 2 columns containing [profile_distance radii] for plotting overlays of

the undulating model surfaces if desired (possibly included in a GMT script).

Extracting 2-D profiles (cross sections) - set radial limits

The default radius range (in the example above) spans crust and mantle. If it is desired to expand or

restrict the radius, simply add 2 additional terms with the minimum radius (minrad) and maximum radius

(maxrad):

E3D (input command): -create2dprofile earthmodel model_property lat1 lon1 lat2 lon2 minrad maxrad

Extracting 2-D profiles (cross sections) - set radial sample rate

The cross section output can be further refined by changing the vertical (radial) sample rate by including

an additional number (delta) which defines the distance between points in km:

E3D (input command): -create2dprofile earthmodel model_property lat1 lon1 lat2 lon2 minrad maxrad delta

Extracting 2-D profiles (cross sections) - return percent perturbations

The default values returned are returned in an absolute sense (e.g. absolute Vp, Vs, etc.). An alternative

output is in terms of percent perturbation relative to the mean value in each layer. This is done by adding

the flag “-dpct” to the end of the -create2dprofile command:

E3D (input command): -create2dprofile earthmodel model_property lat1 lon1 lat2 lon2 -dpct

Note that values in the sedimentary and crustal layers can be very high and some values may be

meaningless if there is zero thickness.

17

4.3 Map output

LLNL-Earth3D may be used to extract map data for a specified model_property using the -createmap

command:

E3D (input command): -createmap earthmodel model_property minlat minlon maxlat maxlon layerindex

where minlat/minlon defines the lower left-hand corner of the map region, maxlat/maxlon defines the

upper right-hand corner of the bounded region, and layerindex is the model layer index (beginning with

index 0). Hint: Use the -getlayerinfo command to get the index number of the layer desired.

The above command will output a text file named Map_*.xyz where the wildcard will consist of the

model name, property and bounding coordinates. The *.xyz file will contain 3columns which are:

[latitudes longitudes model_values].

For example, the following command creates a map data file containing absolute P-wave velocity for

layer index 16 in the LLNL-G3Dv3 model:

E3D (input command): -createmap LLNL-G3Dv3.e3d.binary Vp 15.0 30.0 45.0 90.0 16

This will create a file named “Map_ LLNL-G3Dv3.e3d.binary_Vp_16_15.0_30.0_45.0_90.0.xyz” which

will have 3 columns with the latitudes, longitudes and Vp values:

 15.0000 30.0000 8.0701

 15.0000 30.2166 8.0707

 15.0000 30.4332 8.0714

 …omitted…

 15.0000 89.5668 8.0778

 15.0000 89.7834 8.0787

 15.2158 30.0000 8.0719

 15.2158 30.2166 8.0726

 …omitted…

 45.0000 89.3502 8.1448

 45.0000 89.5668 8.1401

 45.0000 89.7834 8.1376

18

5. Model importation

LLNL-Earth3D is specifically designed to work with LLNL-G3D formatted Earth models stored in a

binary stream. It is possible to import alternative Earth models and/or potentially use LLNL-Earth3D as a

lookup table for user-defined variables with a quasi-spherical spatial arrangement. Since our primary

focus is on structural models of the Earth, the following text specifically describes how to import an Earth

model.

Hierarchical file scheme

Constructing a LLNL-G3D formatted binary file is achieved by first constructing several plain text files.

The text files include i) a MasterModelDefinitions file with the top-level information about a model, ii)

LayerFiles containing information about specific layers defined in the master file, iii) PropertyFiles with

model values for a specific property (e.g. Vp) in a specific layer, and iv) SeaLevelRadii file containing the

radii corresponding to sea level at nodes defined by the spherical tessellation grids. Below is a schematic

of the file structure:

modelname: user-defined name
shape: sphere, spheroid, or geoid
maxresolution: integer value
sealevel_radii: filename
LAYERS:

Layer 1 filename

Layer 2 filename

………

Layer N filename

END

MasterModelDefinitions

File

Layer 1 name

Continuity

TessellationLevel

NumberOfNodes

VARIABLES:

Property1 filename for this layer

Property2 filename for this layer

………

PropertyM filename for this layer

END

NODE RADII:

Radius at vertex 0

Radius at vertex 1

………

Radius at vertex J

END

…
Layer

Files

Layer 2 name

Continuity

TessellationLevel

NumberOfNodes

VARIABLES:

Property1 filename for this layer

Property2 filename for this layer

………

PropertyM filename for this layer

END

NODE RADII:

Radius at vertex 0

Radius at vertex 1

………

Radius at vertex J

END

Layer N name

Continuity

TessellationLevel

NumberOfNodes

VARIABLES:

Property1 filename for this layer

Property2 filename for this layer

………

PropertyM filename for this layer

END

NODE RADII:

Radius at vertex 0

Radius at vertex 1

………

Radius at vertex J

END

sealevel_radii
MaxTessellationLevel integer
NumberOfNodes
Sea level radius at vertex 0
Sea level radius at vertex 1
…
Sea level radius at vertex J
reference

Property1 name for Layer 1

VALUES:

Property1 value at vertex 0

Property1 value at vertex 1

………

Property1 value at vertex J

END

Property2 name for Layer 1

VALUES:

Property2 value at vertex 0

Property2 value at vertex 1

………

Property2 value at vertex J

END

PropertyM name for Layer 1

VALUES:

Property2 value at vertex 0

Property2 value at vertex 1

………

Property2 value at vertex J

END

… Property

Files

SeaLevelRadii File

19

MasterModelDefinitions file content

In the MasterModelDefinitions file shown in the schematic (as well as the other files), the values in bold

font are needed verbatim and the values in italics are user-defined inputs. The text needed in the

MasterModelDefinitions file is simply the name of the model to construct, the general model shape, the

maximum tessellation level and file names. The model name can be anything the user chooses, but the

shape of the model being created must be one of the 3 option listed in the schematic. In any case, the user

must define the radii corresponding to sea level and the file name should be listed. Here is an example for

the LLNL-G3Dv3 model build:

modelname: LLNL-G3Dv3
shape: geoid
maxresolution: 6
sealevel_radii: sealevel_radii.ascii.dat
LAYERS:

LAYER.1.1.ascii.dat

LAYER.1.2.ascii.dat
LAYER.1.3.ascii.dat
LAYER.1.4.ascii.dat
LAYER.1.5.ascii.dat
…omitted…
LAYER.3.35.ascii.dat
LAYER.3.36.ascii.dat
LAYER.3.37.ascii.dat
LAYER.3.38.ascii.dat
END

The layer file names must be in order from the top down (surface to the bottom of the model) and the

radii of any defined layer may not be greater than the radii of any layer listed above it (no crossing

surfaces). However, the layers may “pinch out” and have the same radii as the layer above. Note that

the layer file names may be anything the user chooses. The layer names in the example above are our

personal nomenclature. Additionally, file system paths may be included if the files reside in different

locations or sub-directories (e.g. G:\MyModel\Layer1.1\Layer1.1.ascii.dat).

Node ordering

Each model property (e.g. Vp, Vs, surface radii) must be defined at a specific set of latitude-longitude

points determined by the spherical tessellation recursion process. The model values listed in the

SeaLevelRadii file and the PropertyFiles must be interpolated by the user to each of these points and

written to the text files in a precise sequence. To get a list of the sequence of hard-wired latitude-

longitude points, type:

E3D (input command): -writelatlons maxlevel

This will create a text file with the latitude-longitude locations of the tessellation node points for a grid

defined at the requested maximum tessellation level. The number of node points for a particular

tessellation level can also be determined from the output.

Note that the sequence of the latitude-longitude points never changes, regardless of the tessellation level

requested. Instead, points belonging to higher tessellation level grids are appended to the bottom of the

list of points from the lower level grids.

20

SeaLevelRadii file

The SeaLevelRadii file is a user-defined file containing the radii corresponding to a reference whereby

depth is measured (the reference radius is often sea level). The text file must contain a header line,

followed by the maximum tessellation level, and the number of nodes. The radius values are then listed

in the sequence of latitude-longitude points defined by the spherical tessellation recursion process.

Here is an example for the LLNL-G3Dv3 build where the sealevel_radii file was named

“sealevel_radii.ascii.dat” according the MasterModelDefinitions file:

sealevel_radii
6
40962
6356.765920
6373.798596
...omitted…
6364.343637
6364.713855
reference

Layer files

The LayerFiles contain information about each of the layers in the model. The header includes a user-

defined layer name and a Continuity descriptor that identifies whether the layer (or surface) is continuous

or discontinuous. The next 2 header entries are the tessellation level and number of points, similar to the

entries in the SeaLevelRadii file. Note that the resolution (or tessellation) level may differ for each of

the layers.

There are 3 possible values for Continuity: i) “continuous” if the surface is not at a discontinuity, ii) “top”

if the surface is the top-side of discontinuity, or iii) “bottom” if the surface is the underside of a

discontinuity. An example of a “top” is a layer defined at the Moho and with model properties

corresponding to the bottom of the crust (possible model property might be Vp with values near 6.5

km/s). An example of a “bottom” is a layer defined at the Moho and with model properties corresponding

to the top of the mantle (possible model property might be Vp with values near 8.0 km/s). Note that to

properly form a discontinuity, the radii of each of the “top” and “bottom” surfaces should be exactly the

same.

Note: In order to specify some particular phases for 3-D ray tracing, certain layer names (designated in

the first line of header) must contain specific strings that identify them as special layers. The strings can

be upper or lower case, and may be anywhere in the name of the layer. The current list of special layer

names currently include: "water", "upper crust", "lower crust", "moho", "transition zone", "CMB", and

"ICB". These special strings can be in the layer name of a discontinuity top or bottom (or both).

Currently there is no specific designation for the "410" or "660", just identify all layers in the transition

zone with "transition zone" in the name.

Following the header information is a list of filenames containing the model properties (or variables)

associated with a given layer. The user may include any properties (Vp, Vs, Q, etc.), but note that it is

expected that each layer have the same collection of associated properties.

Following the list of model property file names is a list of node radii values for each of the vertices. The

radii are defined from the center of the Earth to the latitude-longitude points defined in the -writelatlons

output file described above.

21

Below, we will show some example layer file contents for the LLNL-G3Dv3 P-wave model where we are

also including some S-wave velocities for demonstration. The LLNL-G3Dv3 model is defined at

tessellation level 6 (~1° node spacing) in the crust and upper mantle. In the lower mantle however, the

maximum tessellation level is 5 (~2° node spacing).

Here is an example layer file contents for the first layer in the model which defines the top of the water

layer:

1: Water (top)
bottom
6
40962

VARIABLES:
LAYER.1.1.Vp.ascii.dat
LAYER.1.1.Vs.ascii.dat
END

NODE_RADII:
6356.765920
6374.044134
6374.112587
…omitted…
6364.343637
6364.713855
END

In the example shown above, notice that we include the string “Water” in the name so that particular

seismic phases can be ray traced (e.g. we can compute both pwP and pP). The top of the water is a

discontinuity due to the air-water interface and it thus a “bottom” since it is the underside of that

discontinuity. The file names for the variables (properties) are clearly pointing to files with Vp and Vs

values, but there is no file naming convention required by the code.

The next example is a layer file for the bottom of the lower crust:

14: Lower Crust (bottom)
top
6
40962

VARIABLES:
LAYER.1.14.Vp.ascii.dat
LAYER.1.14.Vs.ascii.dat
END

NODE_RADII:
6343.987562
6336.362607
…omitted…
6354.162211
6354.238545
END

In the example above, the bottom of the lower crust is a discontinuous “top” since it is the top side of the

Moho discontinuity.

22

The next example is the layer file contents for the layer also at the Moho, but representing the top of the

upper mantle:

15: Top of mantle (Moho)
bottom
6
40962

VARIABLES:
LAYER.1.15.Vp.ascii.dat
LAYER.1.15.Vs.ascii.dat
END

NODE_RADII:
6343.987562
6336.362607
…omitted…
6354.162211
6354.238545
END

Notice that in the above example, we include the string “Moho” in the layer name so that this surface may

be identified when computing certain seismic phases such as Pn and PmP. Also notice that the radii are

exactly the same as the previous example which is the layer file for the bottom of the lower crust.

The next example is the layer file contents for a lower mantle surface at approximately 971 km depth:

4: Lower Mantle (971km)
continuous
5
10242

VARIABLES:
LAYER.2.4.Vp.ascii.dat
LAYER.2.4.Vs.ascii.dat
END

NODE_RADII:
5389.017000
5402.192897
…omitted…
5394.890116
5395.456085
END

In the example above, the layer is not a discontinuity and is therefore marked “continuous”. In addition,

this layer is defined at a lower resolution level than the previous example (tessellation level 5 rather than

6). The layer name contains a “4” since this is the 4th lower mantle layer. This is our personal layer

naming convention and thus has no particular significance to the user.

Property (or Variable) files

The PropertyFiles are simple text files containing the name of the properties and actual model values

such as Vp. The top line of the file should be the name of the property which is user-defined. It should

23

be noted that, if the user wishes to execute ray tracing utilities, Vp and/or Vs must be one of the properties

and the name given to these properties must be exactly “Vp” and/or “Vs”.

Here is an example property for the LLNL-G3Dv3 mantle P-wave velocity at the Moho:

Vp

VALUES:
8.146360
8.198282
8.119254
8.172410
…omitted…
8.035326
8.017037
8.016469
8.020075
END

Again, the model property values are listed in the precise sequence of the latitude-longitude points listed

by the -writelatlons command.

Execution

Once the collection of text files are completed, the model importation process may be initiated using the

LLNL-Earth3D -importmodel command as follows:

E3D (input command): -importmodel MasterModelDefinitions

where MasterModelDefinitions is a user-defined filename. The process will compute a spherical tessellation

grid at the highest tessellation level needed and populate a binary stream with complete model

information. The code will also compute and store normal vectors to surfaces that are listed as

discontinuous for the purpose of more efficient ray tracing.

If Vp and/or Vs are included as properties, velocity gradients will be computed at each point in the model

and stored with the model. This pre-computation increases the efficiency of the ray tracing algorithms.

Note that the pre-computation steps could take substantial amounts of time, which is a function of the

total number of model nodes. For example, the LLNL-G3Dv3 P-wave velocity model consists of ~1.6

million points and takes ~1.5 hours to complete on a moderate PC workstation.

